The Formal Stochastic Framework for Comparison of Genetic Algorithms

P. Popela, J. Roupec, P. O$mera and R. Matousek
Brno University of Technology
Technicka 2, Brno, Czech Republic

Abstract - The paper purpeose is to discuss the comparison of
GAs. The iterations are considered as random element
realizations for GAs formally defined. The quantification of
algorithm capabilities inspires the use of statistical methods. The
significant difference between various setups is detected by
statistical tests for the test problem.

I. INTRODUCTION

A lot of different optimization algorithms involving
evolutionary techniques have been developed and applied at
the Brno University of Technology during the recent years
for various complex technical problems in Czech industry
and agriculture, see, e.g., the extreme scenario sets search for
melt control problems [1] and [2], combinatorial problems in
water reservoir design [3], distribution problems in the heat
exchanger design [4], approximation techniques in Stirling’s
thermodynamic cycle optimization [5], and logical constraint
transformation in irrigation pipe network reconstruction [6].
The practical experience has shown that for different
problems, distinct algorithm types and setups have to be
chosen. Therefore, we need to compare algorithms and tune
their parameters. It is important to notice that the frequently
occurring technical problems share similar important features
from the algorithmic viewpoint. We will reflect features
listed below in our further considerations.

(1) We are not asked to find a global optimum but we have
to ‘significantly improve’ the known and already
implemented decision. Hence, it means that we have a
precise terminating criterion for the used algorithm.

(2) There is enough computational time available for the
algorithm selection, comparison, and tuning period and for
test computations. The results of this preprocessing phase
may be successfully utilized in the algorithm implementation
phase when problem data varies as the problems of the
similar structure and properties are solved.

(3)In contrast, later in practice, partial real time
requirements must be satisfied. Thus, it means that we have a
restricted amount of time available for our computations, and
so, the algorithm should be stopped after certain, in advance
known, number of iterations whether the improving solution
was or was not found.

(4) Because of aforementioned real time restrictions, the
algorithm has to be implemented in such a way that it realizes
computations, as quickly as it is possible. In addition,
technological demands often require that the software part of
the algorithm implementation is minor relatively to its
hardware part. In this case, it could be impossible to
implement popular and reasonable idea of the algorithm self-
learning i.e. the idea of adopting parameter changes

0-7803-7282-4/02/$10.00 ©2002 IEEE

heuristically using the experience derived from previous
computations.

(5) Due to hardware facilities, the algorithm may be
implemented in the parallel way.

II. OPTIMIZATION FRAMEWORK

Genetic algorithms (GAs) search the solutions of complex
optimization problems. Generally, these problems may be
defined as follows:

?=arggloboptx{f(x)|xe S},)

where xe S denotes a solution, f{x) is an objective function,
and S is a feasible set, SCU, where U is a universe, usually
UcR". Then, argglobopt abbreviation means that a global
optimum (minimum or maximum) value of the objective
function f is searched on S together with the optimal
argument value ie. optimum point Xqy. The sequence of
symbols ?= means that we search for all global optima. In
this text, symbol® e {<,2} is used to specify whether the

minimum (see < below) or maximum (see > below) is taken
into account. Therefore, note that

Xopt € argglobopt, {f(x)|xe S} <
Vxe S:f(X,)® f(x).)

Usually, it is enough to find just one X, So, instead of 7=,
we write ?€. In addition, commonly, a modified problem is
solved instead of (1). Although practitioners are frequently
interested in a global minimum, they may often be fully
satisfied with the ‘significantly improved solution’. It might
be interpreted as a local minimum with the objective function
value below a certain bound F given in advance. We define:

e arglocminx {f{(x)|xe S, f(x) < F}. 3)

Beyond modification (3), solution algorithms are constructed
in such a way that instead of locally minimizing points
specified by (3), some approximating solution points, easily
findable, are searched. Denoting a set of all local minima
related to (3) as Xy, we denote a set of approximate
solutions as X". To guarantee a tight approximation, it can be
assumed that X~ satisfies the restricted distance condition. It
says that the distance p between any approximating point

and X, is smaller than the given limit. It undertakes that the
true minimum is not far from the approximating one i.e.

Vve X" inf{p(u,v)|u€ X pjn} <€. In some cases, these

576

two sets may also satisfy X , NX ' #{} or even

X min © X . The approximate solution set X' may be

specified in different ways, as a set of points satisfying, e.g.,
the small duality gap requirement for large-scale linear
programs [7] or the typical unconstrained nonlinear
programming requirement saying that the gradient of the
objective function should be equal to zero [8], or the integer
programming requirement assigning the incumbent value [9].

The advantage of deterministic algorithms consists in the
fact that under mild assumptions they often converge to the
elements of approximate solution sets X". In this case, the
algorithm is defined for a closed nonempty set U and

nonempty set X° by a point-set-mapping A4:U — 2Y (see,
e.g., [8]). Then, a new iteration point x[k+1] belongs to the
set A(x[k]) for keN where N denotes a set of natural
numbers. Suppose that the sequence of {x[k]| keN} is
contained in a compact subset of U and there is defined a
continuous descent function a@:U —>R satisfying
a(x[k +1]) < a(x[k]) for x[k]e X . If 4 is a closed mapping

over U-X" (cf. [8]) then either algorithm stops in a finite
number of steps with a point in X~ or it generates the infinite
sequence {x[k]| keN} with all accumulation points in X~ and
also a(x[k]) — a(x) for some xeX'. For example, the

descent function may be specified by the gradient norm in
unconstrained convex nonlinear programming or by the
objective function value in linear programming. Then, the
algorithm mapping is specified, e.g., by the modified gradient
direction or by the edge direction in nonlinear or linear
problems, respectively. In both abovementioned cases, the
algorithms converge to local minima. Under convexity
assumptions (see [8]), they are also global minima.

Stochastic algorithms (see, e.g. stochastic quasigradient
algorithm in [10]) are often used for global optimization
nonlinear or discrete problems. In contrast to deterministic
algorithms, they produce sequences that converge to
almost surely.

III. GENETIC ALGORITHM DESCRIPTION

Genetic algorithms commonly use heuristic and stochastic
approaches. From the theoretical viewpoint, the convergence
of heuristic algorithms is not guaranteed for the most of
application cases, cf. II. Before we will begin to discuss GAs,
we describe them (and their heuristic character) formally, cf.
also discussion in [11].

At first, we assume that the result of £’th iteration is not
Jjust point x[£] but a subset of U denoted X[k] not necessarily
finite. Since now, the algorithm is described by a set-to-set
mapping 4:2Y — 2V, and so, X[k+1] = A(X[k]) similarly as
before. For our heuristic ideas the situation may be more
complex. At first, sets X[k] may be ordered by an injection

0-7803-7282-4/02/$10.00 ©2002 IEEE

mapping v:X[k] > N. Hence, we denote the set of all

injection mappings from all subsets of U to N as W. Then, the
heuristic algorithm uses some random elements. Thus, let (Q,
Z, P) be a probability space and related random elements be
denoted by Greek letters from the end of alphabet. Then, the
algorithm is described by a modified mapping

A2 xwxQ — 2V xW . Because set X[#] depends on the
random element defined on €, the results obtained by the
repeated computations of the algorithm step randomly
change. These changes may be described by the set
containing random elements. To make a distinction between
such set and its realization, we further denote the set of
random elements as I'[k] and its realization remains denoted
as X[k]. Even such a general description is possible to use for
computations if sets I'[k], infinite by the definition, can be
finitely described. However, the easiest case is when I'[k] is a
finite set of random elements.

In comparison with common GAs, till now, we have
accepted that the cardinality of I'[k] may vary with k.
Assuming now that the cardinality of T[k] is m, we may often

express its realizations as X[k]e ¥, =[I,U, ie. it is an
element of the Cartesian product of same universe sets U.
Then, we may update the mapping 4, as we do not need the
injection mapping explicitly. In this case, we have
4:¥, xQ—>"Y, . To emphasize that sets X[k] and I'[k] are

directly ordered, we denote them as matrices, so we use X[k]
and I'[k]. We further denote a random element on €2 as £ and
its realization as &°. In general, § may change with k. Then,
X[k+1] = A(X[k], E°[k]) and T[k+1] = A(X[k], E[k]). Thus, the
behavior of the sequence of genetic algorithm (GA) iterations
may be theoretically described using a discrete time
multidimensional random process. Certainly, it might be
questionable to identify such process by its simultaneous
probability distribution function to get GA alternative
complete description. However, we still may learn something
about the process I'[£] specified by GA analyzing stored time
series of X[k]. Mainly, instead of simulating GA behavior
indirectly by a random process, we search for statistically
based characteristics that allow us to evaluate and compare
the quality of algorithms quantitatively. We have to notice
that mapping A is usually composed of several subsequent
mappings (see, e.g., As for selection operator, Ac for
crossover operator already involving the population update,
and A4, for mutation operator). In detail, we have three

mappings: Ag: ¥, xQ oY, ¢, 40 ¥, xQ>Y, ., and
Ay VW, e xQ >, . With the related random elements
used independently in selection &g, crossover &, and
mutation &y, we may write X[k+1] = Ay (4 (4s(X[K], EsTA)),
EC'TKD), En'TK]) and TTk+1] = Ap (Ac(4s(X[K), &s[AD), EclAD),

Em[k]). Similarly, new additional operators may be easily
involved. Before continuation of our discussion, we have to

5717

mention that GAs do not solve the original problem like (1)
or (3) because they deal with transformed problems of type:

?=argopt {g(m)|ne A,g(m) <L}, 4

where 7t denotes a population element from a huge but finite
feasible set A obtained, e.g., by a binary coding © of S, and g
is a fitness function related with f. Therefore, for the
algorithmic purposes, we have the following related couples
X[k] and P[k], T'Tk] and II[k]. To simplify our formulations,
we do not change notation of the algorithm, its steps in A,
and random elements with the change of its domain and we
further utilize symbols 4, As, Ac, Au, &s, &, and Ey. It is
assumed that solving (4) using the GA, transforming it back
from A to S by inverse relation ©”, we get an approximate
solution of (3). So, we may write: P[k+1] = Ay (Ac(4s(P[k],
EsTkD), ECTAD), EmTK]) and TT[k+1] = Ay (A (As(PLK], EmlAD),
Es[K]), Eclk]). If K is the iteration index of the last computed
iteration and P,[K] is the most promising population
component then we get the approximate solution of (3) as x,

= 0" (P,[X]).

The abovementioned scheme unifies the description for
many cases. It may be easily used for the traditional case of
population with haploid individuals ie. those with single
chromosomes. However, it may work well also for the cases
with more than one chromosome that are also suitable for
determination of dominant genes. Dominancy based on the
male/female type increases the evolutionary potential of the
population, especially in varying environments, e.g., for time-
dependent objective functions. In early research [12], we
introduced a diploid chromosome pair mapped to a particular
phenotype using a XOR dominance map, which is coded in
the chromosome itself. Different approaches have been
proposed in referenced literature [13]. Bagley [14], Kim [15]
examined dominance as part of a genome itself, with each
locus of the chromosome having a genetic value and a
separate dominance value. Goldberg [16] points out crucial
flaws in his method. Since mutation was not used on
dominance values, they tended to converge prematurely.
Brindel [17] used an extra chromosome to record dominance.
These dominance vectors evolve via mutation and crossover.
Collingwood’s [18] and Hadad’s [19] studies include using
more than 2 chromosomes and a mask that specifies which of
the multiple chromosomes has the dominant gene at a
particular position. Hollstein [20] (later modified by Holland
[21]) suggested diploidy and evolving dominance mechanism
using triallelic scheme. But they tended to concentrate too
much on the dominance mechanism itself and not enough on
comparing the performance with haploid GAs. In [22] diploid
chromosomes are created with two binary haploid
chromosomes which are used to create a schema which is
then used to measure the fitness. Ryan [23] uses so called
shades (diploidy without dominance - additive diploidy),
which can outperform all other methods in tracking the
environment. Avoiding dominance means that both
phenotypes have an equally likely change of expression. This

0-7803-7282-4/02/$10.00 ©2002 IEEE

may be demonstrated that standard GAs with haploid
chromosomes are unable to correctly locate optimal solutions
for time-dependent objective functions. This shortcoming
will be simply surmounted when haploid chromosomes are
substituted with diploid chromosomes [16], [24], and [25].
GAs, we use, have the following scheme {27], [28] that can
also be modeled by previous formal description. Only some
additional mappings are added:

1. Generation of the initial population: At the beginning
the whole population is generated randomly, the members are
sorted by the fitness (in descendent order). In modifications,
which use a sex, two parts of the population are generated
separately — males and females.

2. Mutation: The mutation is applied to each gene with the
same probability, all GAs described here use p,,s = 0.05. The
mutation of the gene means the inversion of one randomly
selected bit in the gene.

3. Death: The classical GA uses two main operations —
crossover and mutation. In GAs described in this paper we
use the third operation — death. Every member of the
population has the additional information — age. A related
counter is incremented with any GA iteration. If the age of
any member reaches the preset lifetime limit L7, this member
‘dies’ and is immediately replaced by a new randomly
generated member. The age is not mutated nor crossed over.

4. Sorting by the fitmess.

5. Crossover, go to step 2.

In crossover, we do not replace all members of the
population. By crossover, the number of individuals
corresponding to the population quarter is updated. Created
individuals are sorted into the corresponding places in the
population according to their fitness in such a way that the
size of the population remains the same (sex of the
individuals is respected). Newly created descendants of the
low fitness do not have to be involved in the population.
Uniform crossover is used for all genes including the sex
gene (each bit of the offspring chromosome is selected
separately from corresponding bits of both parents
chromosomes). Four basic modifications of GA were used
for testing:

A. GA not using shades and sex (standard GA): Haploid
chromosomes are used. Every value bit is stored in one gene
containing just one bit, so no redundancy occurs. To select
parents for crossover the modified ranking selection strategy
is used.

B. GA using shades and sex: The population is split into
two parts — male and female (one half of initial population
has sex gene preset to a ‘male’ value and the second one to a
‘female’ value). In the crossover one member of the male
part and one member of the female part is chosen. Shades
means, that some kind of multiploidity is used. Chromosomes
contain redundant information — every value bit is stored in
one three bits gene, gene values 0, 1, 2 represent value 0,
gene values 5, 6, 7 represent value 1, and values 3 and 4 are
‘undetermined’ area — their value is set randomly (once for
the whole lifetime of each gene). The structure of these three
bits genes is presented on Fig. 2. The chromosome structure
is shown in Fig. 1. As one can see, sex genes use shades too.

578

Sex genes also participate on crossover, however they are not
mutated. The age is a counter used for the death operation.
There are three variants of the strategy how to select parents
for the crossover:

B.0 Modified ranking selection strategy: The selection
probability of both male and female parent depends on the
fitness.

B.1 Territory defending male strategy: The best member
of the ‘male’ part of the population is chosen for the
crossover with 80% probability, otherwise is chosen
randomly. The second parent is chosen sequentially from the
second (‘female’) part of the population.

B.2 Pair strategy: Parents for the crossover are chosen
sequentially according to their fitness, every member of the
population is used only once in one iteration.

gene content meaning
[sex gene | value genes | age | 111
1{1|0 value 1
sex value 1 shade zone

(male)

(value set randomly
toOor 1)

sex value 0
(female) olol1

value 0

Figure 1: Structure of chromozome Figure 2: Structure of gene

IV. COMPARISON

In general, the following algorithm features are evaluated
in optimization [8]: generality (required assumptions, class of
solvable problems), reliability (robustness, achievable
accuracy), precision (quality of iteration sequence),
sensitivity (importance of input data changes), preprocessing
(necessary preparation computations), computational effort,
and convergence. It is known that GAs are domain
independent, robust, easy of modification, and they have
parallel nature. Different GAs are often compared verbally by
the abovementioned list. These qualitative descriptions may
be too speculative, so some objective measures should be
considered. The important concept in mathematical
programming is a concept of the convergence rate.

However, because of heuristic nature of GAs it cannot be
used. Another idea may come from linear programming.
Although the number of iterations theoretically may grow
exponentially with the problem size in the simplex method,
statistical evaluation of the computational experience shows
that this growth is usually polynomial in practical cases.
Similarly, from our description of GA by II[k], we may use
its realizations P[k] to derive values of g fitness function for
population individuals and think about the required number
of iterations on statistical basis. Then, because of the simple
terminating criterion g(x) < L (see (4)), we may easy decide
whether to stop the algorithm and count the number of
realized iterations. However, this number — algorithm
lifetime - is in general a random variable 1. The discussion in

0-7803-7282-4/02/$10.00 ©2002 IEEE

[30] explains why the empirical probability distribution has
to be used and how to determine the necessary number of
iterations n for the similar solved problem instances by
computing min{neN | P(n>n) < o}, where o is a given
probability level. The next interesting step is to set the
available number of iterations (e.g., because of real time
application). In this case, we have the information about the
algorithm successful termination till time T specified by
another random variable &;. Their values are defined as
follows: &= 1 ©NM<T and =01 > T. We
denote distribution functions of n and & as F, and Fr
respectively. We assume that the fruitfulness of the GA is
defined by the existence of probability of successful
termination p. Let A and B be two different GAs with m and
n runs for chosen time 7, X and Y be numbers of successful
terminations used for estimation of unknown probabilities of
the success pa and pp. So, we may test whether p, = pp.
Denoting x = X/m and y = Y/n we may use a test formula

U=(x- y)(\/ 2(1-2) [407!))—l , ®)

where z = (mx+ny)(m+ n)"l . Other tests could be found in
[33). When |U|>u(%), the hypothesis is rejected at the

significance level o, where u(%) is a critical value of N(0,1)

distribution. See [32] for systematic presentation of
comparison results by a so called ‘hockey table’.

It may not be enough to consider and evaluate the
algorithm behavior only by the final time percentage of the
fruitfulness. Especially, we may be interested in the
fruitfulness development within a time period. In this case, it
might be questionable to choose between two algorithms,
e.g., the first one with fruitfulness quickly increasing but
remaining below a certain bound in comparison with the
second one having the percentage of success increasing
slower but higher. At least in the case of high number of
iterations, we may statistically compare whether two different
GAs are not statistically significantly different. We estimate
probability distribution functions of m for two GAs
empirically and then we may test their difference by the
Kolmogorov-Smirnov test, see [33]. In this way, we may find
that two different GA setups produce two sequences of
iterations that are not different from the viewpoint of the
algorithm fruitfulness.

V. TEST PROBLEM

For computational and explanatory purposes, we utilize a
simple test problem although comparison ideas have also
been tested for test functions, e.g., for Rastrigin function and
for dynamic real world problems, e.g., fuzzy controller, see
[32]. We use a simple dynamic objective function to
demonstrate the efficiency and robustness of the present
modification of the GA. We use a simple dynamic objective

579

function that simulates the behavior of previously discussed
applications [1] - [6], e.g. changing random losses in the
scenario set based two-stage melt control models or
unpredictable dynamics of floods. So, we have:

g (x, t) = 1= g 2000c(e)? ’ ©6)
determined for xe€[2000,2090] and ¢€ {0,1,...,199}. The
function c(f) is determined by c(t)=10[20], where [u] is an

integer part of u, e.g. [2.6]= 2. Function ¢(f) corresponds to a
step function:

c(t)=2000+ a (¢ mod 20))

The value of the time parameter ¢ represents the number of
iterations, so the c(f) function changes after every 20"
iteration.

VI. COMPUTATIONS AND RESULTS

The function (6) was used as the objective function. The
sum of mean square error s in 200 iterations (every iteration
corresponds to one time tic) was computed:

s= 2%0 (x}’ est _ c(t))2 Q)

i=l

Computations were repeated 100 times for every algorithm
modification and for all values of ae {5, 15, ..., 195} in (7).
Computations were done for different types of algorithms for
lifetime limit LTe {1, 2, ..., 30} and for unlimited lifetime.
Figures 4 and 5 show typical dependencies s on LT for
different GA modifications. Three curves in graphs represent

the worst, the medium and the best result obtained for every
value of LT.

Figure 4: GA of type A (a=10)

Figure 5: GA of type Bl (a=10)

Similar computations were done for testing the dependence
of s on value of a in (7). Visualization of results, inspired by
[31], is completed in [32].

All programs were written in the C++ programming
language. The object representation of the gene, the
chromosome and the GA was used.

VII. RELATED RESEARCH

Statistical approaches may also be applied to other
sequences of results produced by GAs. At first, we may study
how the quality of population changes. The main question is

0-7803-7282-4/02/$10.00 ©2002 IEEE

whether it permanently represents the feasible region or its
transformation well. We may want to have the set that
satisfies the requirement that the minimum distance is
maximal. Another possibility is to satisfy the weaker
requirement allowing the ‘collapse’ of certain individuals
asking that the /’th minimum distance is maximal (so called a
l-percentile criterion), see [11] and [31]. We may also
analyze the complete flow of the objective function values by
stream flow graphs as in [13] and [31]. All these
considerations are based on the idea of taking the GA
iterations as a stochastic process results and even may give
suggestions of how to update some GA control parameter. At
the end, we may analyze the behavior of the selected fitness
function value element of population, e.g., the best one that is
the optimal objective function value upper bound.

VII. CONCLUSIONS

The paper shows how the verbal comparison of different
GA versions may be supported by statistical tests confirming
the difference between compared GAs by rejecting of
statistical hypothesis. We have discussed a new simple
diploid model of GA chromosomes, which can outperform
classical haploid GAs especially when the environment is
changing. At the end, we would like to discuss results for
tested GAs in detail. The basic idea with the diploid models
is that they dramatically increase a redundancy of coding of
solutions (binary vectors). However, it was often noticed that
chromosomes with diploid structure have substantially better
performances then a classical GAs wusing haploid
chromosomes (even with doubled populations). The haploid
GA not using the death operator gets stuck in the first global
minimum it finds, and when it is no longer global (as the time
changes), this type of GA is not able to leave the old global
minimum. Redundancy of coding in diploid chromosomes
results in enhancing of the population diversity. The
statistical results following the ideas of Section IV show that
when using the proposed diploid GA for a non-stationary
fitness function, the population effectively deals with the stair
change of fitness landscape. The type of GA and the strategy
of parent seclection have the important influence to
adaptability of GAs. The best results were obtained using the
B.1 type of GA (territory defending male). Generally, the
worst results had the A type of GA — standard haploid GA. It
seems to be very interesting, that the introducing of the
limited lifetime leads to improvement of adaptation
capabilities of this type of GA insomuch as they are
comparable to the more complicated GAs using sexual
reproduction. Different types of GA have different sensitivity
to the lifetime limit. Generally, we can say that the behavior
of the GA using haploid chromosomes is strongly dependent
on the value of the lifetime limit. The sensitivity of the GAs
using diploidy chromosomes is lower. It seems, that the
decreasing of the lifetime limit value leads to better result,
but this problem is a little more complicated. It is necessary
to mention that when the significantly low values of lifetime
limit are used, the character of algorithm changes — algorithm

580

becomes ‘pure’ heuristic and the influence of crossover
operator is very low. We can observe that some ‘optimal’
range of lifetime limit value exists. The range of suitable
values of lifetime limit for haploid GAs is relatively narrow
in comparison to flat and wide range of applicable LT values
for GAs with sexual reproduction. We think that the best
adaptability and sufficient convergence obtained by the GA
version B.1 (dominant territory defending male) could be
explained by the following way. It seems to be very
important to split the population into two subpopulations
where no exchange of genetic information exists inside these
subpopulations. The first, male subpopulation contributes to
fast convergence and stability of the GA and a high variety
inside the female subpopulation contribute to the high
adaptability of the GA.

ACKNOWLEDGEMENTS

This work has been supported by research design CEZ:
J22/98: 261100009 “Non-traditional methods for
investigating complex and vague systems”, MSMT project
"MSM 260000013 and GACR grant GA/106/01/1464.

REFERENCES

[1] P. Popela, “Heuristic search of extremal scenario sets for stochastic
programs,” in Proceedings of the 7" Intemational Conference
MENDEL 98, pp. 194-197, Bmo, 1998

[2] P. Popela and J. Roupec, “GA-Based Scenario Set Modification in
Two-Stage Melt Control Problems,” in Proceedings of the 8
International Conference MENDEL 99, pp. 112-117, Brno, 1999

[3] T. VIadil and P. Popela, “Optimum Water Reservoir Design — Flood-
Related Case,” in Proceedings of the 10% International Conference
MENDEL 2001, Bmo, 2001

[4] P. Popela, Z. Jegla, and P. Stehlik, “The Optimum Plate Heat
Exchanger Design Involving Random Parameters,” in Proceedings of
the CHISA International Conference, Prague, 2000

{51 P. Stojan and P. Popela, “The Direct Discretisation Technique Applied
to Stirling’s Thermodynamic Cycle Optimisation,” in Proceedings of
the 9* International Conference MENDEL 2000, Brno, 2000

[6] P. Popela, S. Korsuii, P. Spitz, and T. VIa&il, “A general optimization
model of the irrigation system pipe network,” in Proceedings of the 9th
International Conference FCE TU, Vol.10, pages 145-148, Brno, 1999

[7] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, “Linear programming and
network flows,” 2™ edition, John Wiley & Sons, Inc., New York, 1990

[8] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, “Nonlinear
programming: theory and algorithms,” 2™ edition, John Wiley & Sons,
Inc., New York, 1990

[9] A. Brooke, D. Kendrick, and A. Meeraus, “Release 2.25 GAMS A
User’s Guide,” Boyd & Fraser Publ. Co., Denvers, 1992

{10] Y. M. Emmoliev and R. J.-B. Wets, “Numerical techniques for
stochastic optimization problems,” Springer Verlag, Berlin, 1988

0-7803-7282-4/02/$10.00 ©2002 IEEE

581

[11] P. Popela and J. Dvorfik, “Global optimization and genetic algorithms,”
in Proceedings of the 5" International Conference MENDEL 96, pp.
205-214, Bmo, 1996

[12] P. O8mera, V. Kvasnitka, J. Pospichal, “Genetic Algorithms with
Diploid Chromosomes,” in Proceedings of the 6™ International
Conference MENDEL 97, Bmo, 1997

[13] D. B. Fogel, “Evolutionary Computation,” Towards a new Philosophy
of Machine Intelligence, IEEE Press, 1995

[14] J. D. Bagley, “The Behavior of Adaptive Systems Which Employ
Genetic and Correlation Algorithms,” Dissertation Abstracts
International 28, 1967

[15] Y. Kim, J. Kim, S. Lee, Ch. Cho, G. H. L. Kwang, “Winner Take All
Strategy for Diploid Genetic Algorithm,” in Proceedings of the First
Asia-Pacific Conference on Simulated Evolution and Learning, 1996

[16] D. E. Goldberg, “Nonstationary Function Optimization with
Dominance and Diploidy,” in Proceedings of ICGA2, 1987

[17] A. Brindle, “Genetic Algorithms for Function Optimization,”
Unpublished doctoral dissertation, University of Alberta, Edmonton

[18} E. Collingwood, “Useful Diversity via Multiploidy,” AISB Workshop
on Evolutionary Computing, 1996

[19] B. S. Hadad and Ch. F. Eick, “Supporting Polyploidy in Genetic
Algorithms Using Dominance Vectors,” Lecture Notes in Computer
Science, Evolutionary Programming VI, EP 97, USA, 1997

[20] R. B. Holstein, “Artificial Genetic Adaptation in Computer Control
Systems,” Doctoral Dissertation Abstracts, University of Michigan

[21] J. H. Holland, “Adaptation in Natural and Artificial Systems,” Ann
Arbor, The University of Michigan Press, 1975

[22] S. Lee and H. Rowlands, “A Diploid Genetic Algorithm for Finding
Robust Solution in a Problem Space,” in Proceedings of the 7"
International Conference MENDEL 98, Brno, 1998

[23] C. Ryan, “Shades.-a Polygenic Inheritance Scheme,” in Proceedings of
the 6% International Conference MENDEL’97, pp- 140-147, Bmo,
1997

[24] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and
Machine Learning,” Addison-Wesley, 1989

[25] D. E. Goldberg and R. E. Smith, “Nonstationary function optimization
using genetic algorithms with dominance and diploidy,” in Proceedings
of the First International Conference On Genetic Algorithms and Their
Applications, Pittsburgh, PA, 24.-26.July 1985

[26] P. O3mera, “Complex Adaptive Systems,” in Proceedings of the 10"
International Conference MENDEL 2001, pp.137-143, Brno, 2001

[27) J. Roupec and P. O3mera, “Genetic algorithms with sexual
reproduction for optimal fuzzy control Systems,” in Proceedings of
Process Control Conference 01, pp. 118, Slovak Republic, 2001

[28] J. Roupec, P. O¥mera, and R. Matousek, “The Behavior of Genetic
Algorithms in Dynamic Environment,” in Proceedings of the 10®
International Conference MENDEL 2001, pp.84- 90, Bro, 2001

[29] R. Matousek and P. O3mera, “Design of adaptive genetic algorithms
based on fuzzy inference system,” in Proceedigs of the 9™ Fuzzy
Colloquium 2001, pp.201-206, Zittau, 2001

[30] J. Roupec, P. Popela, and P. O3mera, “The additional stopping rule for
heuristic algorithms,” in Proceedings of the 6" Intemational
Conference MENDEL 97, pp. 135-139, Brno, 1997

[31]1 R. Matousek, P. Popela, and Z. Karpidek, “Some possibilities of
fitness-value-stream analysis,” in Proceedings of the 7 International
Conference MENDEL 98, pages 69-73, Brno, 1998

[32] J. Roupec, “The development of GA for optimization of fuzzy
controller parameters,” Ph.D. diss., Brno University of Technology,
2001

[33] J. Andel, “Statistical methods,” CU, Prague, 1993

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

